DRModule
- class torchdr.DRModule(n_components: int = 2, device: str = 'auto', keops: bool = False, verbose: bool = False, random_state: float = 0)[source]
Bases:
BaseEstimator
,ABC
Base class for DR methods.
Each children class should implement the fit_transform method.
- Parameters:
n_components (int, default=2) – Number of components to project the input data onto.
device (str, default="auto") – Device on which the computations are performed.
keops (bool, default=False) – Whether to use KeOps for computations.
verbose (bool, default=False) – Whether to print information during the computations.
random_state (float, default=0) – Random seed for reproducibility.
- abstract fit_transform(X: Tensor | ndarray, y=None)[source]
Fit the dimensionality reduction model and transform the input data.
- Parameters:
X (torch.Tensor or np.ndarray of shape (n_samples, n_features)) – or (n_samples, n_samples) if precomputed is True Input data or input affinity matrix if it is precomputed.
y (None) – Ignored.
- Raises:
NotImplementedError – This method should be overridden by subclasses.
Examples using DRModule
:
PCA via SVD and via AffinityMatcher
TSNE embedding of the swiss roll dataset
Neighbor Embedding on genomics & equivalent affinity matcher formulation