DRModule#
- class torchdr.DRModule(n_components: int = 2, device: str = 'auto', backend: str | None = None, verbose: bool = False, random_state: float | None = None)[source]#
Bases:
BaseEstimator
,ABC
Base class for DR methods.
Each children class should implement the fit_transform method.
- Parameters:
n_components (int, default=2) – Number of components to project the input data onto.
device (str, default="auto") – Device on which the computations are performed.
backend ({"keops", "faiss", None}, optional) – Which backend to use for handling sparsity and memory efficiency. Default is None.
verbose (bool, default=False) – Whether to print information during the computations.
random_state (float, default=None) – Random seed for reproducibility.
- abstract fit_transform(X: Tensor | ndarray, y=None)[source]#
Fit the dimensionality reduction model and transform the input data.
- Parameters:
X (torch.Tensor or np.ndarray of shape (n_samples, n_features)) – or (n_samples, n_samples) if precomputed is True Input data or input affinity matrix if it is precomputed.
y (None) – Ignored.
- Raises:
NotImplementedError – This method should be overridden by subclasses.
Examples using DRModule
:#
![](../_images/sphx_glr_demo_ne_methods_affinity_matcher_thumb.png)
Neighbor Embedding on genomics & equivalent affinity matcher formulation