Bibliography#

[CFG+21]

Benjamin Charlier, Jean Feydy, Joan Alexis Glaunes, François-David Collin, and Ghislain Durif. Kernel operations on the gpu, with autodiff, without memory overflows. Journal of Machine Learning Research, 22(74):1–6, 2021.

[Cut13]

Marco Cuturi. Sinkhorn distances: lightspeed computation of optimal transport. Advances in neural information processing systems, 2013.

[DBohmHK22]

Sebastian Damrich, Jan Niklas Böhm, Fred A Hamprecht, and Dmitry Kobak. From $ t $-sne to umap with contrastive learning. arXiv preprint arXiv:2206.01816, 2022.

[DH21]

Sebastian Damrich and Fred A Hamprecht. On umap's true loss function. Advances in Neural Information Processing Systems, 34:5798–5809, 2021.

[FSejourneV+19]

Jean Feydy, Thibault Séjourné, François-Xavier Vialard, Shun-ichi Amari, Alain Trouvé, and Gabriel Peyré. Interpolating between optimal transport and mmd using sinkhorn divergences. In The 22nd International Conference on Artificial Intelligence and Statistics, 2681–2690. PMLR, 2019.

[HLMScholkopf04]

Jihun Ham, Daniel D Lee, Sebastian Mika, and Bernhard Schölkopf. A kernel view of the dimensionality reduction of manifolds. In Proceedings of the twenty-first international conference on Machine learning, 47. 2004.

[HR02]

Geoffrey E Hinton and Sam Roweis. Stochastic neighbor embedding. Advances in neural information processing systems, 2002.

[MHM18]

Leland McInnes, John Healy, and James Melville. Umap: uniform manifold approximation and projection for dimension reduction. arXiv preprint arXiv:1802.03426, 2018.

[PGM+19]

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, and others. Pytorch: an imperative style, high-performance deep learning library. Advances in neural information processing systems, 2019.

[PVG+11]

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, and others. Scikit-learn: machine learning in python. the Journal of machine Learning research, 12:2825–2830, 2011.

[Rou87]

Peter J Rousseeuw. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. Journal of computational and applied mathematics, 20:53–65, 1987.

[SK67]

Richard Sinkhorn and Paul Knopp. Concerning nonnegative matrices and doubly stochastic matrices. Pacific Journal of Mathematics, 21(2):343–348, 1967.

[TLZM16]

Jian Tang, Jingzhou Liu, Ming Zhang, and Qiaozhu Mei. Visualizing large-scale and high-dimensional data. In Proceedings of the 25th international conference on world wide web, 287–297. 2016.

[VAVFC24]

Hugues Van Assel, Titouan Vayer, Rémi Flamary, and Nicolas Courty. Snekhorn: dimension reduction with symmetric entropic affinities. Advances in Neural Information Processing Systems, 2024.

[VdMH08]

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine learning research, 2008.

[VDSN+18]

David Van Dijk, Roshan Sharma, Juozas Nainys, Kristina Yim, Pooja Kathail, Ambrose J Carr, Cassandra Burdziak, Kevin R Moon, Christine L Chaffer, Diwakar Pattabiraman, and others. Recovering gene interactions from single-cell data using data diffusion. Cell, 174(3):716–729, 2018.

[ZMP04]

Lihi Zelnik-Manor and Pietro Perona. Self-tuning spectral clustering. Advances in neural information processing systems, 2004.

[ZMMS23]

Stephen Zhang, Gilles Mordant, Tetsuya Matsumoto, and Geoffrey Schiebinger. Manifold learning with sparse regularised optimal transport. arXiv preprint arXiv:2307.09816, 2023.