Bibliography#
Benjamin Charlier, Jean Feydy, Joan Alexis Glaunes, François-David Collin, and Ghislain Durif. Kernel operations on the gpu, with autodiff, without memory overflows. Journal of Machine Learning Research, 22(74):1–6, 2021.
Marco Cuturi. Sinkhorn distances: lightspeed computation of optimal transport. Advances in neural information processing systems, 2013.
Sebastian Damrich, Jan Niklas Böhm, Fred A Hamprecht, and Dmitry Kobak. From $ t $-sne to umap with contrastive learning. arXiv preprint arXiv:2206.01816, 2022.
Sebastian Damrich and Fred A Hamprecht. On umap's true loss function. Advances in Neural Information Processing Systems, 34:5798–5809, 2021.
Jean Feydy, Thibault Séjourné, François-Xavier Vialard, Shun-ichi Amari, Alain Trouvé, and Gabriel Peyré. Interpolating between optimal transport and mmd using sinkhorn divergences. In The 22nd International Conference on Artificial Intelligence and Statistics, 2681–2690. PMLR, 2019.
Jihun Ham, Daniel D Lee, Sebastian Mika, and Bernhard Schölkopf. A kernel view of the dimensionality reduction of manifolds. In Proceedings of the twenty-first international conference on Machine learning, 47. 2004.
Geoffrey E Hinton and Sam Roweis. Stochastic neighbor embedding. Advances in neural information processing systems, 2002.
Leland McInnes, John Healy, and James Melville. Umap: uniform manifold approximation and projection for dimension reduction. arXiv preprint arXiv:1802.03426, 2018.
Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, and others. Pytorch: an imperative style, high-performance deep learning library. Advances in neural information processing systems, 2019.
Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, and others. Scikit-learn: machine learning in python. the Journal of machine Learning research, 12:2825–2830, 2011.
Peter J Rousseeuw. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. Journal of computational and applied mathematics, 20:53–65, 1987.
Richard Sinkhorn and Paul Knopp. Concerning nonnegative matrices and doubly stochastic matrices. Pacific Journal of Mathematics, 21(2):343–348, 1967.
Jian Tang, Jingzhou Liu, Ming Zhang, and Qiaozhu Mei. Visualizing large-scale and high-dimensional data. In Proceedings of the 25th international conference on world wide web, 287–297. 2016.
Hugues Van Assel, Titouan Vayer, Rémi Flamary, and Nicolas Courty. Snekhorn: dimension reduction with symmetric entropic affinities. Advances in Neural Information Processing Systems, 2024.
Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine learning research, 2008.
David Van Dijk, Roshan Sharma, Juozas Nainys, Kristina Yim, Pooja Kathail, Ambrose J Carr, Cassandra Burdziak, Kevin R Moon, Christine L Chaffer, Diwakar Pattabiraman, and others. Recovering gene interactions from single-cell data using data diffusion. Cell, 174(3):716–729, 2018.
Lihi Zelnik-Manor and Pietro Perona. Self-tuning spectral clustering. Advances in neural information processing systems, 2004.
Stephen Zhang, Gilles Mordant, Tetsuya Matsumoto, and Geoffrey Schiebinger. Manifold learning with sparse regularised optimal transport. arXiv preprint arXiv:2307.09816, 2023.