Source code for torchdr.neighbor_embedding.cosne

# -*- coding: utf-8 -*-
"""Hyperbolic Stochastic Neighbor Embedding (CO-SNE) algorithm."""

# Author: Nicolas Courty <ncourty@irisa.fr>
#
# License: BSD 3-Clause License

from typing import Dict, Optional, Union, Type, Any
import torch

from torchdr.neighbor_embedding.base import SparseNeighborEmbedding
from torchdr.affinity import (
    EntropicAffinity,
    CauchyAffinity,
)
from torchdr.utils import logsumexp_red, RiemannianAdam


[docs] class COSNE(SparseNeighborEmbedding): """Implementation of the CO-Stochastic Neighbor Embedding (CO-SNE) introduced in :cite:`guo2022co`. This algorithm is a variant of SNE that uses a hyperbolic space for the embedding. Parameters ---------- perplexity : float Number of 'effective' nearest neighbors. Consider selecting a value between 2 and the number of samples. Different values can result in significantly different results. lambda1 : float Coefficient for the loss enforcing equal norms between input samples and embedded samples. gamma : float Gamma parameter of the Cauchy distribution used for affinity, by default 2. n_components : int, optional Dimension of the embedding space. lr : float, optional Learning rate for the algorithm, by default 1.0. optimizer_kwargs : dict, optional Arguments for the optimizer, by default None. scheduler : {'constant', 'linear'}, optional Learning rate scheduler. scheduler_kwargs : dict, optional Arguments for the scheduler, by default None. init : {'hyperbolic'} or torch.Tensor of shape (n_samples, output_dim), optional Initialization for the embedding Z, default 'hyperbolic'. init_scaling : float, optional Scaling factor for the initialization, by default 0.5. tol : float, optional Precision threshold at which the algorithm stops, by default 1e-4. max_iter : int, optional Number of maximum iterations for the descent algorithm, by default 2000. device : str, optional Device to use, by default "auto". backend : {"keops", "faiss", None}, optional Which backend to use for handling sparsity and memory efficiency. Default is None. verbose : bool, optional Verbosity, by default False. random_state : float, optional Random seed for reproducibility, by default None. early_exaggeration_coeff : float, optional Coefficient for the attraction term during the early exaggeration phase. By default 12.0 for early exaggeration. early_exaggeration_iter : int, optional Number of iterations for early exaggeration, by default 250. tol_affinity : float, optional Precision threshold for the entropic affinity root search. max_iter_affinity : int, optional Number of maximum iterations for the entropic affinity root search. metric_in : {'sqeuclidean', 'manhattan'}, optional Metric to use for the input affinity, by default 'sqeuclidean'. sparsity : bool, optional Whether to use sparsity mode for the input affinity. Default is True. check_interval : int, optional Number of iterations between checks for convergence, by default 50. """ # noqa: E501 def __init__( self, perplexity: float = 30, lambda1: float = 1, gamma: float = 2, n_components: int = 2, lr: Union[float, str] = "auto", optimizer_kwargs: Union[Dict, str] = {}, scheduler: Optional[ Union[str, Type[torch.optim.lr_scheduler.LRScheduler]] ] = None, scheduler_kwargs: Optional[Dict] = None, init: str = "hyperbolic", init_scaling: float = 0.5, min_grad_norm: float = 1e-7, max_iter: int = 2000, device: Optional[str] = None, backend: Optional[str] = None, verbose: bool = False, random_state: Optional[float] = None, early_exaggeration_coeff: float = 12.0, early_exaggeration_iter: Optional[int] = 250, tol_affinity: float = 1e-3, max_iter_affinity: int = 100, metric_in: str = "sqeuclidean", sparsity: bool = True, check_interval: int = 50, ): self.metric_in = metric_in self.metric_out = "sqhyperbolic" self.perplexity = perplexity self.lambda1 = lambda1 self.gamma = gamma self.max_iter_affinity = max_iter_affinity self.tol_affinity = tol_affinity self.sparsity = sparsity affinity_in = EntropicAffinity( perplexity=perplexity, metric=metric_in, tol=tol_affinity, max_iter=max_iter_affinity, device=device, backend=backend, verbose=verbose, sparsity=sparsity, ) affinity_out = CauchyAffinity( metric=self.metric_out, gamma=self.gamma, device=device, backend=backend, verbose=verbose, ) super().__init__( affinity_in=affinity_in, affinity_out=affinity_out, n_components=n_components, optimizer=RiemannianAdam, optimizer_kwargs=optimizer_kwargs, min_grad_norm=min_grad_norm, max_iter=max_iter, lr=lr, scheduler=scheduler, scheduler_kwargs=scheduler_kwargs, init=init, init_scaling=init_scaling, device=device, backend=backend, verbose=verbose, random_state=random_state, early_exaggeration_coeff=early_exaggeration_coeff, early_exaggeration_iter=early_exaggeration_iter, check_interval=check_interval, ) def _fit_transform(self, X: torch.Tensor, y: Optional[Any] = None) -> torch.Tensor: # We compute once and for all the norms of X data samples self.X_norm = (X**2).sum(-1) return super()._fit_transform(X) def _repulsive_loss(self): log_Q = self.affinity_out(self.embedding_, log=True) rep_loss = logsumexp_red(log_Q, dim=(0, 1)) # torch.tensor([0]) Y_norm = (self.embedding_**2).sum(-1) Y_norm = torch.arccosh(1 + 2 * (Y_norm / (1 - Y_norm)) + 1e-8) ** 2 distance_term = ((self.X_norm - Y_norm) ** 2).mean() return rep_loss + self.lambda1 * distance_term