.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/affinities/demo_ea_adaptivity.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code. .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_affinities_demo_ea_adaptivity.py: Entropic Affinities can adapt to varying noise levels ===================================================== We show the adaptivity property of entropic affinities on a toy simulated dataset with heteroscedastic noise. .. GENERATED FROM PYTHON SOURCE LINES 9-20 .. code-block:: Python # Author: Hugues Van Assel # # License: BSD 3-Clause License import matplotlib.pyplot as plt import torch from matplotlib import cm from torchdr import EntropicAffinity, NormalizedGaussianAffinity .. GENERATED FROM PYTHON SOURCE LINES 21-23 We generate three Gaussian clusters of points with different standard deviations (respectively std=1, 2 and 3). .. GENERATED FROM PYTHON SOURCE LINES 23-52 .. code-block:: Python torch.manual_seed(0) n_cluster = 20 # number of points per cluster X1 = torch.Tensor([-10, -10])[None, :] + torch.normal( 0, 1, size=(n_cluster, 2), dtype=torch.double ) X2 = torch.Tensor([10, -10])[None, :] + torch.normal( 0, 2, size=(n_cluster, 2), dtype=torch.double ) X3 = torch.Tensor([0, 10])[None, :] + torch.normal( 0, 3, size=(n_cluster, 2), dtype=torch.double ) X = torch.cat([X1, X2, X3], 0) def plot_affinity_graph(G): m = G.max().item() for i in range(3 * n_cluster): for j in range(i): plt.plot( [X[i, 0], X[j, 0]], [X[i, 1], X[j, 1]], color="black", alpha=G[i, j].item() / m, ) .. GENERATED FROM PYTHON SOURCE LINES 53-65 Row-normalised Gaussian affinity with constant bandwidth -------------------------------------------------------- We first consider a Gaussian affinity, normalized by row, with a **constant bandwidth**. Such a global bandwidth **only controls the global entropy** of the affinity. In ``TorchDR``, we can easily implement it using :class:`torchdr.NormalizedGaussianAffinity` and setting the parameter ``normalization_dim=1``. .. GENERATED FROM PYTHON SOURCE LINES 65-83 .. code-block:: Python aff = NormalizedGaussianAffinity( sigma=1, normalization_dim=1, backend=None, zero_diag=False ) K = aff(X) plt.figure(1, (6, 3)) plt.subplot(1, 2, 1) plt.imshow(K, cmap=cm.Blues) plt.title("Gaussian Affinity Matrix") plt.subplot(1, 2, 2) plot_affinity_graph(K) plt.scatter(X[:, 0], X[:, 1], alpha=0.5) plt.title("Gaussian Affinity Graph") plt.show() .. image-sg:: /auto_examples/affinities/images/sphx_glr_demo_ea_adaptivity_001.png :alt: Gaussian Affinity Matrix, Gaussian Affinity Graph :srcset: /auto_examples/affinities/images/sphx_glr_demo_ea_adaptivity_001.png :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 84-88 We can observe a remarkable **heterogeneity in the density of connections**. This occurs because it is less costly to create connections in high-density regions. As a consequence, points in sparse regions create very few connections with their neighbors. .. GENERATED FROM PYTHON SOURCE LINES 90-101 Entropic affinity (adaptive bandwidth) -------------------------------------- To remedy this issue, we can use an **entropic affinity**. The entropic affinity employs an **adaptive bandwidth** that depends on the local density of points. By controlling the entropy of each row of the affinity matrix, it ensures that **each point has the same number of effective neighbors** (given by the ``perplexity`` parameter) regardless of the local density around it. In ``TorchDR``, this object is available here : :class:`torchdr.EntropicAffinity`. .. GENERATED FROM PYTHON SOURCE LINES 101-120 .. code-block:: Python aff_ea = EntropicAffinity( perplexity=5, backend=None, verbose=False, zero_diag=False, sparsity=False ) EA = aff_ea(X) plt.figure(1, (6, 3)) plt.subplot(1, 2, 1) plt.imshow(EA, cmap=cm.Blues) plt.title("Entropic Affinity Matrix") plt.subplot(1, 2, 2) plot_affinity_graph(EA) plt.scatter(X[:, 0], X[:, 1], alpha=0.5) plt.title("Entropic Affinity Graph") plt.show() .. image-sg:: /auto_examples/affinities/images/sphx_glr_demo_ea_adaptivity_002.png :alt: Entropic Affinity Matrix, Entropic Affinity Graph :srcset: /auto_examples/affinities/images/sphx_glr_demo_ea_adaptivity_002.png :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 121-126 We can now observe a **homogeneous density of connections** across clusters. Thus, the entropic affinity effectively filters out the various noise levels. This affinity is an important component of the **TSNE** algorithm. .. rst-class:: sphx-glr-timing **Total running time of the script:** (0 minutes 2.738 seconds) .. _sphx_glr_download_auto_examples_affinities_demo_ea_adaptivity.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: demo_ea_adaptivity.ipynb ` .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: demo_ea_adaptivity.py ` .. container:: sphx-glr-download sphx-glr-download-zip :download:`Download zipped: demo_ea_adaptivity.zip ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_