Source code for torchdr.neighbor_embedding.sne

# -*- coding: utf-8 -*-
"""Stochastic Neighbor embedding (SNE) algorithm."""

# Author: Hugues Van Assel <vanasselhugues@gmail.com>
#
# License: BSD 3-Clause License

from torchdr.neighbor_embedding.base import SparseNeighborEmbedding
from torchdr.affinity import (
    EntropicAffinity,
    GaussianAffinity,
)
from torchdr.utils import logsumexp_red


[docs] class SNE(SparseNeighborEmbedding): r"""Implementation of Stochastic Neighbor Embedding (SNE) introduced in [1]_. It involves selecting a :class:`~torchdr.EntropicAffinity` as input affinity :math:`\mathbf{P}` and a :class:`~torchdr.GaussianAffinity` as output affinity :math:`\mathbf{Q}`. The loss function is defined as: .. math:: -\sum_{ij} P_{ij} \log Q_{ij} + \sum_i \log \Big( \sum_{j} Q_{ij} \Big) \:. Parameters ---------- perplexity : float Number of 'effective' nearest neighbors. Consider selecting a value between 2 and the number of samples. Different values can result in significantly different results. n_components : int, optional Dimension of the embedded space (corresponds to the number of features of Z). lr : float or 'auto', optional Learning rate for the algorithm. By default 'auto'. optimizer : {'SGD', 'Adam', 'NAdam', 'auto'}, optional Which pytorch optimizer to use. By default 'auto'. optimizer_kwargs : dict or 'auto', optional Arguments for the optimizer. By default None. scheduler : {'constant', 'linear'}, optional Learning rate scheduler. scheduler_kwargs : dict, optional Arguments for the scheduler. init : {'normal', 'pca'} or torch.Tensor of shape (n_samples, output_dim), optional Initialization for the embedding Z. init_scaling : float, optional Scaling factor for the initialization. tol : float, optional Precision threshold at which the algorithm stops. max_iter : int, optional Number of maximum iterations for the descent algorithm. tolog : bool, optional Whether to store intermediate results in a dictionary, by default False. device : str, optional Device to use, by default "auto". keops : bool, optional Whether to use KeOps, by default False. verbose : bool, optional Verbosity, by default False. random_state : float, optional Random seed for reproducibility, by default 0. early_exaggeration : float, optional Coefficient for the attraction term during the early exaggeration phase. By default 10.0 for early exaggeration. coeff_repulsion : float, optional Coefficient for the repulsion term, by default 1.0. early_exaggeration_iter : int, optional Number of iterations for early exaggeration, by default 250. tol_affinity : float, optional Precision threshold for the entropic affinity root search. max_iter_affinity : int, optional Number of maximum iterations for the entropic affinity root search. metric_in : {'sqeuclidean', 'manhattan'}, optional Metric to use for the input affinity, by default 'sqeuclidean'. metric_out : {'sqeuclidean', 'manhattan'}, optional Metric to use for the output computation, by default 'sqeuclidean'. References ---------- .. [1] Geoffrey Hinton, Sam Roweis (2002). Stochastic Neighbor Embedding. Advances in neural information processing systems 15 (NeurIPS). """ # noqa: E501 def __init__( self, perplexity: float = 30, n_components: int = 2, lr: float | str = "auto", optimizer: str = "auto", optimizer_kwargs: dict | str = None, scheduler: str = "constant", scheduler_kwargs: dict = None, init: str = "pca", init_scaling: float = 1e-4, tol: float = 1e-7, max_iter: int = 2000, tolog: bool = False, device: str = None, keops: bool = False, verbose: bool = False, random_state: float = 0, early_exaggeration: float = 10.0, coeff_repulsion: float = 1.0, early_exaggeration_iter: int = 250, tol_affinity: float = 1e-3, max_iter_affinity: int = 100, metric_in: str = "sqeuclidean", metric_out: str = "sqeuclidean", ): self.metric_in = metric_in self.metric_out = metric_out self.perplexity = perplexity self.max_iter_affinity = max_iter_affinity self.tol_affinity = tol_affinity affinity_in = EntropicAffinity( perplexity=perplexity, metric=metric_in, tol=tol_affinity, max_iter=max_iter_affinity, device=device, keops=keops, verbose=verbose, ) affinity_out = GaussianAffinity( metric=metric_out, device=device, keops=keops, verbose=False, ) super().__init__( affinity_in=affinity_in, affinity_out=affinity_out, n_components=n_components, optimizer=optimizer, optimizer_kwargs=optimizer_kwargs, tol=tol, max_iter=max_iter, lr=lr, scheduler=scheduler, scheduler_kwargs=scheduler_kwargs, init=init, init_scaling=init_scaling, tolog=tolog, device=device, keops=keops, verbose=verbose, random_state=random_state, early_exaggeration=early_exaggeration, coeff_repulsion=coeff_repulsion, early_exaggeration_iter=early_exaggeration_iter, ) def _repulsive_loss(self): log_Q = self.affinity_out(self.embedding_, log=True) return logsumexp_red(log_Q, dim=1).sum() / self.n_samples_in_